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Abstract 
We study a model related to Van der Poloscillatorunder an external stochastic excitation described by white 

noise process. This study is limited to find the Gaussian behavior of the stochastic solution processes related to 

the model. Under the application ofWiener-Hermite expansion, a deterministic system is generated to describe 

the Gaussian solution parameters (Mean and Variance).The deterministic system solution is approximated by 

applying the multi-stepdifferential transformedmethodand the results are compared with NDSolveMathematica 

10 package. Some case studies are considered to illustrate some comparisons for the obtained results related to 

the Gaussian behavior parameters.  
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I.  Introduction 
In recent years, the analysis of the nonlinear oscillator subjected to random excitation has been studied by 

many investigators. This phenomena is described by a stochastic differential equation under deterministic initial 

conditions and its solution behavior will be become a stochastic process due to existing an external stochastic 

term in the mathematical modeling. Some examples related to this phenomena simulate the vibrational studies 

of mechanical, electrical systems, earthquake disturbances,wind load in structural analysis, noise-corrupted 

signals in communication theory, and the motion of the sea or ground roughness in vehicle dynamics. 

The study of the stochastic systems related to any nonlinear probabilistic system requires a simulation to the 

statistical properties for its solution processes and the Wiener Hermite expansion (WHE) method has an interest 

area related to this study. The WHE method [1-11] introduces analytical treatments for an exited system 

randomly by the stochastic white noise process and these treatments reduce deterministic system where its 

solution simulates the statistical moments behavior for the stochastic solution processes. 

The differential transform method (DTM) [12] is one of the semi-numerical and analytical methods for 

ordinary and partial differentialequations that uses the form of polynomials as approximations of the exact 

solutions that are sufficientlydifferentiable. The DTM has an interest application area in the recent years in the 

analytical treatments related to nonlinear boundary and initial value problems. The method was developed in 

different research areas to reach the real behavior under a new concept called the multi-step differential 

transform method (Ms-DTM) [21-22].     

This paper introduces WHE linked by Ms-DTM application to simulate the Gaussian part behavior related 

to a nonlinear stochastic Van der Poloscillator model. The mathematical description of this problem [23] takes 

the form, 

𝑥 + 𝜉 𝑥2 − 1 𝑥 + 𝛽𝑥 𝑡 + 𝛼𝑥(𝑡)3 = 𝜆𝑛 𝑡; 𝜔 ,        𝑥 0 = 𝑎, 𝑥  0 = 𝑏     (1) 

where𝑛(𝑡; 𝜔) is the stochastic white noise process, 𝜆 is its intensity parameter and 𝑎, 𝑏, 𝜉, 𝛽, 𝛼are deterministic 

values. 

This paper is organized as follows. In sections 2-4, we describe a simple survey related to WHE, DTM and 

Ms-DTM. Sections 5, 6 and 7 describe the application results of WHE , DTM and Ms-DTM respectively. The 

conclusions are then given in section 8. 

 

II. The stochastic Wiener-Hermite expansion (WHE) 
The Wiener–Hermite expansion (WHE) is used to approximate the stochastic processes and this expansion 

consists of two different quantities, the first is an unknown deterministic and the other is a probabilistic. The 

probabilistic type includes stochastic processes take the symbolic formula 𝐻(𝑖)(𝑡1, 𝑡2, ⋯ , 𝑡𝑖)which is called 

stochastic Wiener – Hermite polynomials (WHPs) and subject to the recurrence relation 

𝐻 𝑖  𝑡1, 𝑡2, ⋯ , 𝑡𝑖  = 𝐻 𝑖−1  𝑡1, 𝑡2, ⋯ , 𝑡𝑖−1 𝐻
 1  𝑡𝑖 −  𝐻 𝑖−2  𝑡1, 𝑡2, ⋯ , 𝑡𝑖−2 𝛿 𝑡𝑖−𝑚 − 𝑡𝑖 

𝑖−1
𝑚=1 ,    𝑖 ≥ 2,(2) 
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where𝐻 0 = 1, 𝐻 1  𝑡 = 𝑛 𝑡   is the stochastic white noise process and 𝛿(. )is the Dirac-delta function. WHPs 

setare elements of a complete set of statistically orthogonal random functions, i.e. 

𝐸[ 𝐻 𝑖  𝑡1, 𝑡2, ⋯ , 𝑡𝑖 𝐻
 𝑗   𝑡1, 𝑡2, ⋯ , 𝑡𝑗 ] = 0,     ∀𝑖 ≠ 𝑗,     (3) 

where𝐸[ . ] denotes the expectation operator.  

     The completeness of WHPs set, plays an important role to describes the general formula of WHE for any 

arbitrary stochastic process 𝑣 𝑡; 𝜔  and it can be presented in the form, 

𝑣 𝑡; 𝜔 = 𝑣 0  𝑡 +  𝑣 1  𝑡, 𝑡1 𝐻
 1  𝑡1 𝑑𝑡1

∞

−∞
+  𝑣 2  𝑡, 𝑡1, 𝑡2 𝐻

 2  𝑡1, 𝑡2 𝑑𝑡1𝑑𝑡2
∞

−∞
+ ⋯,  (4) 

where𝑣 0  𝑡 , 𝑣 𝑖  𝑡1, … , 𝑡𝑖 , 𝑖 ≥ 1are called the (unknown deterministic) kernels of the WHE. The first two 

terms of the right-hand side (1𝑠𝑡order term) define the Gaussian part of the stochastic process, while the second-

order and higher terms correspond to the non-Gaussian part. 

      Under taking expectations linked by the statistical properties of WHPs set (see appendix A), the mean and 

variance for the Gaussian part of WHE can be expressed as follows: 

𝐸 𝑣 𝑡; 𝜔  = 𝑢 0  𝑡 ,      𝑉𝑎𝑟 𝑣 𝑡; 𝜔  =   𝑣 1  𝑡, 𝑡1, 𝑡2  
2
𝑑𝑡1

∞

−∞
     (5) 

 

III. The differential transformation method (DTM) 
In this section, we present a review of the DTM. The differential transform of the𝑘𝑡ℎ  derivative of function 

𝑓 𝑡 is defined as follows, 

𝐹 𝑘 =
1

𝑘 !
 
𝑑𝑘𝑓 𝑡 

𝑑𝑡𝑘
 

t=𝑡0

 ,                                                                  (6) 

where𝑓 𝑡 is the original function and 𝐹 𝑘 is the transformed function and the differential inverse transform of 

𝐹 𝑘 is defined as,  

𝑓(𝑡) =  𝐹 𝑘  𝑡 − 𝑡0 
𝑘 .∞

𝑘=0         (7) 

By combining Eqs. (6-7), we get  

𝑓(𝑡) =  
1

𝑘 !
 
𝑑𝑘𝑓 𝑡 

𝑑𝑡𝑘
 

t=𝑡0

 𝑡 − 𝑡0 
𝑘 ,∞

𝑘=0     (8) 

which implies that the concept of differential transform is derived from Taylor series expansion, but the method 

does notevaluate the derivatives symbolically. However, relative derivatives are calculated by an iterative way 

which isdescribed by the transformed equations of the original function. For implementation purposes, the 

function𝑓(𝑡) is expressed by afinite series and Eq. (7)can be written as, 

𝑓(𝑡) ≈  𝐹 𝑘  𝑡 − 𝑡0 
𝑘 ,𝑁

𝑘=0       (9) 

where𝑁 is decided by the convergence of natural frequency and the fundamental operations performed by 

differential transformcan readily be obtained and are listed inappendix B. 

 

IV. The multi-step differential transformation method (Ms-DTM) 
Although the DTM is used to provide approximate solutions for a wide class of nonlinear problems in terms 

of convergentseries with easily computable components, it has some drawbacks: the series solution always 

converges in a very smallregion and it has slow convergent rate or completely divergent in the wider region [21-

22]. To overcome the shortcoming, wepresent in this section the multi-step DTM that we have developed for the 

numerical solution of differential equations. Forthis purpose, we consider the following nonlinear initial value 

problem, 

𝑓 𝑡, 𝑢, 𝑢′, … , 𝑢 𝑝  = 0,       (10) 

subject to the initial conditions𝑢 𝑘 (0) = 𝑑𝑘 , 𝑘 = 0,1, … , 𝑝 − 1 .  

Let  0, 𝑇 be the interval over which we want to find the solution of the initial value problem (10). In actual 

applicationsofthe DTM, the approximate solution of the initial value problem (10)can be expressed by the finite 

series, 

𝑢 𝑡 =  𝑎𝑛𝑡
𝑛 ,𝑁

𝑛=0 𝑡 ∈  0, 𝑇 .      (11) 

The multi-step approach introduces a new idea for constructing the approximate solution. Assume that the 

interval  0, 𝑇 is divided into𝑀subintervals 𝑡𝑚−1, 𝑡𝑚  , 𝑚 = 1,2, … , 𝑀 of equal step size ℎ = 𝑇/𝑀by using the 

nodes𝑡𝑚 = 𝑚ℎ. Themain ideas of the multi-step DTM are as follows. First, we apply the DTM to Eq. (10)over 

the interval 0, 𝑡1 , we will obtainthe following approximate solution, 

𝑢1 𝑡 =  𝑎1𝑛𝑡
𝑛 ,𝑁

𝑛=0 𝑡 ∈  0, 𝑡1 ,      (12) 

using the initial conditions 𝑢1
 𝑘 

(0) = 𝑑𝑘 . For 𝑚 ≥ 2and at each subinterval  𝑡𝑚−1, 𝑡𝑚  we will use the initial 

conditions𝑢𝑚
 𝑘 

(, 𝑡𝑚−1) = 𝑢𝑚−1
 𝑘 

(, 𝑡𝑚−1)and apply the DTM to Eq. (10)over the interval  𝑡𝑚−1, 𝑡𝑚  where 𝑡0 in 

Eq. (6)is replaced by 𝑡𝑚−1. The process is repeated and generates a sequence of approximate solutions 

𝑢𝑚 (𝑡), 𝑚 = 1,2, … , 𝑀 for the solution𝑢(𝑡), 

𝑢𝑚  𝑡 =  𝑎𝑚𝑛 (𝑡 − 𝑡𝑚)𝑘 ,𝑁
𝑛=0 𝑡 ∈  𝑡𝑚 , 𝑡𝑚+1 ,(13) 
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and the final form of 𝑢 𝑡  can be written as follow,  

𝑢 𝑡 =

 
 

 
𝑢1 𝑡  ,                𝑡 ∈  0, 𝑡1 

𝑢2 𝑡 ,                  𝑡 ∈  𝑡1𝑡2 
⋮

𝑢𝑀 𝑡 𝑡 ∈  𝑡𝑀−1,𝑡𝑀 .  

      (14) 

 

V. WHE application to simulate the Gaussian part related to the model 
The Gaussian part of the stochastic solution process for the model (1), it can be putted by WHE in the 

following form  

𝑥 𝑡; 𝜔 = 𝑥 0  𝑡 +  𝑥 1  𝑡, 𝑡1 𝐻
 1  𝑡1 𝑑𝑡1

∞

0
(15) 

Substituting from (15) into (1) and taking some expectations linked by WHPs and Dirac delta function 

properties (see [24] &appendix [A]), a deterministic system is generated in following form 

𝐿1 𝑥
 0  𝑡  +

1

3
𝐿2   𝑥 0  𝑡  

3
+ 3𝑥 0  𝑡   𝑥 1  𝑡; 𝑡1  

2
𝑑𝑡1

∞

0

 = 0, 

𝐿1 𝑥
 1  𝑡; 𝑡1  +  𝐿2  𝑥 1  𝑡; 𝑡1   𝑥 0  𝑡  

2
+   𝑥 1  𝑡; 𝑡1  

2
𝑑𝑡1

∞

0

  = 𝜆𝛿 𝑡 − 𝑡1 , 

𝑥 0  0 = 𝑎,      𝑥  0  0 = 0,         𝑥 1  0, 𝑡1 = 0, 𝑥  1  0, 𝑡1 = 0,(16) 

where𝐿 =  
𝑑2

𝑑𝑡 2 − 𝜉
𝑑

𝑑𝑡
+ 1 , 𝐿2 =  𝜉

𝑑

𝑑𝑡
+ 𝛼  

 

VI. DTM application to simulate the deterministic system approximation 

   The outputs of DTMapplication linked by the properties of the differential transform (see appendix B), related 

to the deterministic differential system (16) are described in the following recurrence relations  

 

 𝑘 + 2  𝑘 + 1 𝑋 0  𝑘 + 2 − 𝜉 𝑘 + 1 𝑋 0  𝑘 + 1 +  𝑋 0  𝑘  

+
𝛼

3
   𝑋 0  𝑠  𝑋 0  𝑚 𝑋 0  𝑘 − 𝑠 − 𝑚 

𝑘−𝑠

𝑚=0

𝑘

𝑠=0

+ 3  𝑋 1  𝑚, 𝑡1  𝑋
 1  𝑘 − 𝑠 − 𝑚, 𝑡1 + (𝑘 − 𝑠 − 𝑚)𝑋 1  𝑘 − 𝑠 − 𝑚 + 1, 𝑡1  𝑑𝑡1

∞

0

  + 

𝜉

3
(𝑘 + 1)    𝑋 0  𝑠  𝑋 0  𝑚 𝑋 0  𝑘 − 𝑠 − 𝑚 + 1 + 3  𝑋 1  𝑚, 𝑡1  𝑋

 1  𝑘 − 𝑠 − 𝑚 + 1, 𝑡1 +
∞

0
𝑘−𝑠+1
𝑚=0

𝑘+1
𝑠=0

(𝑘−𝑠−𝑚+1)𝑋1𝑘−𝑠−𝑚+1,𝑡1𝑑𝑡1=0,     (17) 

   𝑘 + 2  𝑘 + 1 𝑋 1  𝑘 + 2, 𝑡1 − 𝜉 𝑘 + 1 𝑋 1  𝑘 + 1, 𝑡1 + 𝑋 1  𝑘, 𝑡1  𝑑𝑡1

∞

0

+ 𝛼     𝑋 1  𝑠, 𝑡1 𝑑𝑡1

∞

0

 𝑋 0  𝑚 𝑋 0  𝑘 − 𝑠 − 𝑚 

𝑘−𝑠

𝑚=0

𝑘

𝑠=0

+  𝑋 1  𝑚, 𝑡1 𝑋
 1  𝑘 − 𝑠 − 𝑚, 𝑡1 𝑑𝑡1

∞

0

  + 

𝜉(𝑘 + 1)    𝑋(1) 𝑠, 𝑡1 𝑑𝑡1
∞

0
 𝑋(0) 𝑚 𝑋(0) 𝑘 − 𝑠 − 𝑚 + 1 +  𝑋(1) 𝑚, 𝑡1 𝑋

(1) 𝑘 − 𝑠 − 𝑚 +
∞

0
𝑘−𝑠+1
𝑚=0

𝑘+1
𝑠=0

1,𝑡1𝑑𝑡1=𝜆𝛿𝑘,0(18) 

where𝑋 0  0 = 𝑎, 𝑋 0  1 = 0, 𝑋 1  0, 𝑡1 = 0, 𝑋 1  1, 𝑡1 = 0 and the final form for the solutions are 

described  by a finite series, it  can be written as follow 

𝑥 0  𝑡 =  𝑋 0  𝑘 𝑁
𝑘=0 𝑡𝑘 ,       𝑥 1  𝑡, 𝑡1 =  𝑋 1  𝑘, 𝑡1 

𝑁
𝑘=0 𝑡𝑘(19) 

 

VII. Ms-DTM outputs simulation and discussions 
The application of DTM reduces a sequence of algebraic equations generated after expanding the 

recurrence relations (17-18) using a simulated programing by Mathematica 10. The solution of theses algebraic 

equations determines the coefficients in (19) and the outputs are functions in the initial parameters related the 

problem. By repeating this process over sequenced steps by a certain range to reach the real behavior of the 

problem. For every step, a new initial value problem is considered and its conditions are estimated from the 

obtained solution at final range of the previous step. The mathematical computations related to this method is 
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performed by a symbolic program was designed by Mathematica 10. By another one, a parallel program by the 

same version uses the NDSolve package to satisfy the result of the previous program.  

The application of Ms-DTM includes some cases study simulate the Gaussian solution parameters of the 

problem and their results are displayed in the figures (1-4) and the tables (1-4) where in tables 1& 3, the values 

of columns 2 & 3 already indicate to an initial solution for every interval and a final solution for every a 

previous interval. Also the cases study include results are obtained by NDSolveMathematica software 10 and it 

is clear that the comparison between Ms-DTM and NDSolve applications gives excellent agreements. 

 

 
 

Table 1: The series coefficients for piecewise solutions by Ms-DTM for 𝐸[𝑥 𝑡 ] 
at𝜆 = 1, 𝛽 = 1, 𝛼 = 3, 𝜉 = 1,   𝑎 = 0, 𝑏 = 0.3 
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Fig.1: Variations of 𝐸[𝑥 𝑡 ] with 𝑡 by Ms-DTM and NDSolveMathematica Software 

for different values of 𝜆 at 𝛽 = 1, 𝛼 = 3, 𝜉 = 1, 𝑎 = 0, 𝑏 = .3 
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Fig.2: Variations of 𝑉𝑎𝑟[𝑥 𝑡 ] with 𝑡 by Ms-DTM and NDSolve Mathematica Software  

for different values of 𝜆 at   𝛽 = 1, 𝛼 = 3, 𝜉 = 1, 𝑎 = 0, 𝑏 = .3 
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Tabl.2: Comparison between some results obtained by Ms-DTM and NDSolveMathematica software for 

𝐸[𝑥 𝑡 ] and 𝑉𝑎𝑟[𝑥 𝑡 ]at𝜆 = 1, 𝛽 = 1, 𝛼 = 3, 𝜉 = 1, 𝑎 = 0, 𝑏 = .3 
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Table 3: The series coefficients for piecewise solution by Ms-DTM for 𝐸[𝑥 𝑡 ] 

at𝜆 = 0.6, 𝛽 = 1, 𝛼 = 1, 𝜉 = 3,    𝑎 = 0, 𝑏 = 0.3 
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Fig.3: Variations of 𝐸[𝑥 𝑡 ] with 𝑡 by Ms-DTM and NDSolveMathematicasoftware 

for different values of 𝜆 at  𝛽 = 1, 𝛼 = 1, 𝜉 = 3, 𝑎 = 0, 𝑏 = 0.3 
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Fig.4: Variations of𝑉𝑎𝑟[𝑥 𝑡 ] with 𝑡 by Ms-DTM and NDSolveMathematicasoftware 

for different values of𝜆 at  𝛽 = 1, 𝛼 = 1, 𝜉 = 3, 𝑎 = 0, 𝑏 = 0.3 
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Table 4: Comparison between some results obtained byMs-DTM and NDSolveMathematica software 

for𝐸[𝑥 𝑡 ] and 𝑉𝑎𝑟[𝑥 𝑡 ]  at𝜆 = 0.65, 𝛽 = 1, 𝛼 = 1, 𝜉 = 3, 𝑎 = 0, 𝑏 = 0.3 

 

VIII. Conclusions 
In this paper, the Wiener Hermite expansion technique was applied to simulate the Gaussian part 

parameters (mean and variance) of the stochastic solution processes related to a stochastic model describes 
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Vander Pol–Duffingoscillator model. Due to apply this method, a deterministic nonlinear system was generated 

its solution describes the Gaussian part parameters. The approximations of the deterministic system were 

obtained by the concepts of multi-step differential transformed method and its results were compared with 

NDSolveMathematicasoftware package. Some cases study were introduced to illustrate the results of analysis.      

 

Appendix A 

   The statistical properties of Wiener Hermite polynomials (WHPs) [10-11] which were used in this paper are 

simulated in the following items 

 𝐸[ 𝐻 1  𝑡1 𝐻
 1  𝑡2 ] = 𝛿 𝑡2 − 𝑡1  

 𝐸[ 𝐻 1  𝑡1 𝐻
 1  𝑡2 𝐻

 1  𝑡3 ] = 0 

 𝐸[ 𝐻 1  𝑡1 𝐻
 1  𝑡2 𝐻

 1  𝑡3 𝐻
 1  𝑡4 ] = 𝛿 𝑡2 − 𝑡1 𝛿 𝑡3 − 𝑡4 + 𝛿 𝑡1 − 𝑡3 𝛿 𝑡2 − 𝑡4 + 𝛿 𝑡1 − 𝑡4 𝛿 𝑡2 −

𝑡3 

Appendix B 

     In this paper, the used properties [22] related to the differential transformation𝐹(𝑘) for a function 𝑓(𝑡) are 

stated in the following items 

 𝑓 𝑡 = 𝑚𝑢 𝑡 ± 𝑛𝑣 𝑡 ⇒ 𝐹 𝑘 =   𝑚𝑈 𝑘 ± 𝑛𝑉(𝑘)     
 𝑓 𝑡 = 𝑢 𝑡 𝑣 𝑡  ⇒ 𝐹 𝑘 =    𝑈(𝑙)𝑘

𝑙=0 𝑉(𝑘 − 𝑙)     

 𝑓 𝑡 = 𝑢 𝑡 𝑣 𝑡 𝑤(𝑡)           ⇒ 𝐹 𝑘 =    𝑈 𝑙 𝑘−𝑙
𝑠=0 𝑉 𝑠 𝑘

𝑙=0 𝑊(𝑘 − 𝑙 − 𝑠)   

 𝑓 𝑡 =
𝑑𝑚 𝑢(𝑡)

𝑑𝑡𝑚
⇒ 𝐹 𝑘 =

 𝑘+𝑚 !

𝑘!
𝑈(𝑘 + 𝑚)   

 𝑓 𝑡 = 𝑡𝑚 ⇒ 𝐹 𝑘 = 𝛿𝑘,𝑚  where 𝛿𝑘,𝑚 is Kronecker's delta 
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